METABOLISMO de las grasas

guillotte

Miembro de honor
METABOLISMO de las grasas​

Reservas de grasas: en sujetos sanos no entrenados, la proporcion corporal de grasas puede llegar a ser del 20 - 35% en la mujer y del 10-20%

En los varones. Las grasas se almacenan en el organismo en forma de triglicéridos, en las células grasas ( adipocitos ), que a su vez forman el tejido adiposo. Además, una pequeña parte de los trigliceridos se almacena en las células musculares y circula por la sangre unida a una albúmina. La mayor parte del tejido adiposo se encuentra bajo la piel, formando el denominado tejido graso subcutáneo. Además por ello, la grasa se distribuye predominantemente alrededor de los órganos abdominales. Dependiendo de las condiciones de nutrición a largo plazo, este deposito graso puede reducirse a un mínimo, en caso de balance de energía negativo prolongado, como ocurre durante los periodos de anorexia o ayuno, o bien alcanzar proporciones importantes, cuando el balance energético sea positivo a largo plazo, tal como se observa en la sobrealimentación crónica. En sujetos bien entranados, la grasa total almacenada en el tejido adiposo es menos que la correspondiente a sujetos sedentarios, concretamente 5-15% en varones y 10-25% en mujeres. Si embargo, esta cantidad de grasa posee un potencial energético muy importante ( aproximadamente 7000 kcal por kilogramo de grasa del tejido adiposo), lo que la convierte en la reserva energética mas importante en cualquier caso de déficit prolongado de energía, en que los depósitos corporales de hc se agotan progresivamente y la grasa pasa a ser el combustible energética principal. Durante el ejercicio físico, se producen una series de estímulos nerviosos, metabólicos y hormonales, que llevaran a un ritmo incrementado de utilización de grasas, por una parte, y de movilización de las mismas, por la otra.

La oxidación de las grasas en forma de ácidos grasos libres aumentara, progresivamente, dentro de las mitocondrias de las células musculares. Como resultado de esto, disminuirá la concentración de agl dentro de las células musculares lo cual a su vez estimulara la captación por esta de agl procedentes de la sangre. El aumento del flujo de sangre hacia el músculo es el primer paso para suministrar mas agl a las células musculares. Este proceso de transporte, captación y movilización de agl, lo estimula la acción de la llamadas “hormonas del sobre esfuerzo( o del estrés)”, adrenalina y noradrenalina, cuyas concentraciones aumentaran durante el ejercicio, estimulando la lipolisis, mediante una disminución de la insulina circulante y un aumento de la actividad del sistema nervioso central. Los distintos pasos que llevan hasta un aumento en la oxidación de las grasas son numerosos y complejos. Esta es la principal razón por la que la adaptación a un estado estacionario puede tardar en alcanzar cerca de 20 minutos. El entrenamiento muscular de resistencia aumenta la capacidad del músculo esquelético para emplear grasas como fuente de energía durante ejercicios de resistencia permitirá al atleta reducir el empleo de hc para una intensidad fija de ejercicios. Esto, a su vez, ahorrara hc endogenos y retrasara la aparición de la fatiga. Por otra parte, los adipocitos aumentaran su sensibilidad a los estímulos inductores de movilización de agl, con lo cual aumentara la velocidad de adaptación a demandas crecientes durante el ejercicio. Sin embargo, durante la máxima intensidad del ejercicio, la utilización de hc endogenos parece tener lugar a toda velocidad, y el incremento de agl en sangre no llevara a una reducción del empleo de glucogeno muscular y hepático. Dentro del músculo, las grasas se almacenan como triglicérido, en formas de pequeñas gotitas lipidas, localizadas cerca de las mitocondrias. Sin embargo, esta parte de la reserva de grasas representa solo una pequeña fracción de las reservas totales. Aunque los individuos entrenados en resistencia poseen menos tejido adiposo que la población sedentaria, el contenido en grasa de sus músculos tiende a ser mayor. Podemos preguntarnos cual es la razón de esto. Una posible causa es que el ejercicio de resistencia lleva a un agotamiento parcial de grasa instramuscular. Un aumento de esta reserva grasa significaría, por lo tanto, una mayor disponibilidad de sustrato. Si esto es así , se trataría de una adaptación fisiológica normal. En proporción a la grasa corporal total, el contenido en grasa de los músculos es muy pequeño. Se ha comprobado cientificamente que la influencia del ejercicio sobre los trigliceridos musculares puede ser la misma que sobre los adipocitos. La disminucion de las concentraciones intracelulares de agl, asi como de cientos estimulos hormonales y nerviosos, aumenta la lipolisis y lleva a la liberacion de agl, que seran captados por las mitocondrias para la produccion de energia por mecanismos oxidativos. Se ha demostrado que, como resultado de lo expuesto, las reservas intramusculares de grasa disminuyen despues del ejercicio de resistencia.

·Tejido adiposo( trigliceridos): los acidos grasos( ag) se almacenan en el cuerpo como trigliceridos( tg) contenidos en los adipositos, que forman el tejido adiposo(ta) .tambien se almacena en el musculo en forma de gotas de tg.

Despues de las comidas la grasa se absorbe y circula por la sangre como tg en particulas formando quilomicrones y lipoproteinas de alta, baja y muy baja densidad( hdl,ldl,vldl) o como ag libres fijados a la albumina.

·Metabolismo de los trigliceridos: el proceso de fijacion de los acidos grasos ( esterificacion ) como trigliceridos y su liberacion a partir de estos es el llamado ciclo de los trigliceridos / acidos grasos. La actividad de este ciclo viene determinada por las necesidades metabolocas de acidos grasos para la produccion de energia y por el suministro de acidos grasos a partir de

fuentes externas. El glicerol necesario para la esterificacion se obtiene a partir de la glucolisis. Los acidos grasos libres son metabolizados por metabolismo aerobio a traves del ciclo del acido citrico. Gracias a esta cadena de procesos metabolicos, los acidos grasos se unen al coenzima -a( co-a) y asi pueden entrar en el ciclo de krebs, en forma de acetil coenzima-a. A altas velocidades de oxidacion de la grasa, se da una elevada produccion de acetil coa y de citrato, el primer producto intermedio del ciclo del acido citrico que se forma a partir de acetil coa. Se sabe que el acetil coa inhibe la conversion de piruvato o mas acetil coa. Por otro lado, el citrato inhibe la glucolisis. Por lo tanto, el aumento de la oxidacion de los acidos grasos inhibe tanto la actividad de la glucolisis tanto como el primer paso de la conversion del piruvato dentro de ciclo del acido citrico. Como consecuencia de ello, la oxidacion total de carbohidratos se vera reducida. Por el contrario el aumento de metabolismo de los carbohidratos, por ejemplo despues de la ingestion por via oral de hc, inhibe la lipolisis y reduce la disponibilidad de acidos grasos, asi como la oxidacion. En el metabolismo del ejercicio fisico, estos procesos de utilizacion de carbohidratos y de grasas se encuentran estrechamente relacionados y controlados por mecanismo hormonales y nerviosos. El suministro exogeno de carbohidratos o de grasas, asi como el de sustancias que estimulen el metabolismo de ambos sustraros, son factores que pueden tener gran influencia.
 
LEAN LEAN LEAN esto sirve no puede ser que los post basura tengan millones de visitas, esto yo me lo se pero es importante que lo sepan los demas en fin...
 
Gran aporte Guillote!! __genial____genial____genial____genial__
Directo a la impresora
 
Hay algunas cosas que no entiendo muy bien, como esta afirmación:

La mayor parte del tejido adiposo se encuentra bajo la piel, formando el denominado tejido graso subcutáneo. Además por ello, la grasa se distribuye predominantemente alrededor de los órganos abdominales.

Que pasa, que en los abdominales hay mas piel que en el resto del cuerpo???
 
Que pasa, que en los abdominales hay mas piel que en el resto del cuerpo???

Jajajaja, yo creo que debe ser una mala traducción o un simple error al escribirlo. Uno de los motivos por los que hay más grasa es para regular la temperatura, un ejemplo son los michelines, porque los riñones necesitan trabajar a una temperatura determinada (y el tener más grasa encima de los riñones es para garantizar esa temperatura algo más elevada :)
 
Hay algunas cosas que no entiendo muy bien, como esta afirmación:

La mayor parte del tejido adiposo se encuentra bajo la piel, formando el denominado tejido graso subcutáneo. Además por ello, la grasa se distribuye predominantemente alrededor de los órganos abdominales.

Que pasa, que en los abdominales hay mas piel que en el resto del cuerpo???


la grasa entre otras funciones tiene una que la de la proteccion mecanica de los organos, tus organos, riñones,higado, intestinos, estan recubiertos por grasa para protegerlos, a eso es a lo q se refiere con grasa alrededor de los organos abdominales (zona donde estan la gran mayoria de los organos)

si aumenta nuestra cantidad de grasa aumentará tb mas en esta zona
 
Lo que mas me ha sorprendido és el último parágrafo, que dice que cuando la oxidación de las grasas es elevada, se inhibe la glucólisis. I que cuando se da el aumento del metabolismo de CH inhibe la lipólisis. Grandes datos.
 
Hay algunas cosas que no entiendo muy bien, como esta afirmación:

La mayor parte del tejido adiposo se encuentra bajo la piel, formando el denominado tejido graso subcutáneo. Además por ello, la grasa se distribuye predominantemente alrededor de los órganos abdominales.

Que pasa, que en los abdominales hay mas piel que en el resto del cuerpo???

Te digo lo mismo que te han dicho ya mard y compañía. Lo que sí, ese parrafo en concreto puede que haya quedado un poco lioso...

La grasa está por un lado, entre los músculos del abdomen y la piel (que es la subcutánea), y hay por otro lado también grasa envolviendo a los órganos (no toda la grasa es subcutánea), por detrás de los músculos abdominales (entre los músculos abdominales y la espalda). Los dos pueden ayudar como protección, en caso de un golpe en el abdomen.

Ahora, lo que sí, donde más hay (y se nota un montón en personas obesas) es en el abdomen, como una gran capa subcutánea.

Esto no es que sea una cosa de "porque haya más piel", sino que está definido genéticamente. Los hombres acumulamos más en la barriga, igual que las mujeres acumulan más en la cadera...
 
Lo que mas me ha sorprendido és el último parágrafo, que dice que cuando la oxidación de las grasas es elevada, se inhibe la glucólisis. I que cuando se da el aumento del metabolismo de CH inhibe la lipólisis. Grandes datos.

esto es evidente, si usas grasas ahorras hidratos y si usas hidratos ahorras grasas
 
He encontrado un post completisimo y tambien un poco largo:

METABOLISMO DE LÍPIDOS
El metabolismo de lípidos y carbohidratos está ampliamente relacionado en la célula.
METABOLISMO DE ÁCIDOS GRASOS
Los ácidos grasos tienen 3 funciones en la célula:
-Estructural (ácidos grasos que forman las membranas: fosfolípidos, glucolípidos...).
-Mensajeros secundarios (1,2-DAG tiene características de señalización celular).
-Energética (son la mayor reserva de energía en los animales).
En los seres vivos pueden haber ácidos grasos saturados o insaturados. Los dobles enlaces tienen casi siempre estereoquímica cis. La mayoría de ácidos grasos naturales tienen un número par de carbonos.
A mayor número de carbonos, más sólida es la molécula del ácido graso. A partir de 16-18 C, una molécula es sólida a temperatura ambiente. Conforme más dobles enlaces, más fluida (más líquida es).
Una membrana rica en ácidos grasos insaturados es menos fluida.
Los ácidos grasos son más ricos en energía que el glucógeno, porque los ácidos grasos son moléculas más reducidas que la glucosa y su oxidación completa a CO2 da más energía. La combustión de 1 gr de grasa produce más calorías (9 Kcal) que 1 gr de azúcar (4 Kcal).
El glucógeno se almacena acumulando mucha agua (hay el triple de H2O que de glucógeno). Los ácidos grasos se acumulan como triglicéridos de forma prácticamente anhidra (son muy hidrofóbicos). La eficiencia de almacenar energía en forma de ácido graso es 5 o 6 veces más eficiente que en forma de glucógeno.
Los dobles enlaces tienen la partícula -en-. Los dobles enlaces se indican mediante una Dx => 1er C donde se establece el doble enlace. La nomenclatura común indica de donde proviene o los tejidos en los que se puede encontrar.
METABOLISMO
La degradación de los ácidos grasos es la degradación de los triglicéridos porque es así como se almacenan. Implica 3 pasos diferentes:
-Movilización de triglicéridos.
-Introducción de los ácidos grasos en el orgánulo donde se degradarán (sólo en la mitocondria).
-Degradación de la molécula de ácidos grasos (b-oxidación de los ácidos grasos).
La movilización de los ácidos grasos es por hidrólisis de los triglicéridos mediante lipasas. Se produce glicerol y los 3 ácidos grasos correspondientes.
El glicerol no es un componente grande de los ácidos grasos. Es el único componente del Triglicérido que puede dar glucosa. Los ácidos grasos, en los animales, no pueden dar glucosa.
El glicerol es fosforilado en glicerol-3-P mediante la glicerol quinasa. Mediante la glicerol-P deshidrogenasa se convierte el glicerol-3-P en dihidroxiacetona-P, que puede dar glucosa.
El acetilo entra en la mitocondria en forma de acetil-co-A. No entra como acetil-co-A pero tiene que activarse.





Esta reacción transcurre a través de un intermedio (acil-AMP).
Para entrar en la mitocondria requiere un transportador específico. Existe un enzima que transfiere el grupo acilo a la carnitina, que tiene un OH donde es transferido el ácido graso. Esta reacción es catalizada en la cara externa de la mitocondria mediante el acil-carnitina transferasa 2.
La translocasa (que está en la membrana interna de la mitocondria) coge acilcarnitina y la entra en la mitocondria.
La acil-carnitina transferasa II transfiere el grupo acilo de la carnitina al co-A y da lugar al acil-co-A. La carnitina después vuelve a salir al exterior.
El acil-co-A aparece dentro de la mitocondria. En la mitocondria sufre la b-oxidación (proceso en el que se obtiene energía del ácido graso).
La b-oxidación de ácidos grasos es estrictamente mitocondrial.
Llega un ácido graso y se degrada esencialmente cortando la molécula de ácido graso en trozos de 2 C. Los cortes se hacen mediante 4 reacciones cíclicas en cadena:
Se oxida un enlace a doble enlace mediante la acil-co-A deshidrogenasa asociado a el paso de FAD a FADH2. Da lugar al enoil-co-A (tiene un doble enlace que siempre tiene una estereoquímica trans). Es sustrato para la enoil-co-A hidratasa, que da lugar siempre al L-hidroxiacil-co-A (porque el sustrato es siempre estereoquímicamente definido).
El L-hidroxiacil-co-A es oxidado a cetona mediante la L-hidroxianoil-co-A deshidrogenasa, que requiere una reducción de NAD a NADH, dando el cetoacil-co-A en la posición b.
Es susceptible a ser atacado por un co-A (es una tiólisis). Se rompe 1 enlace saltando los electrones de un lado a otro: queda una molécula de acetil-co-A y otra molécula con 2 C menos.
Se produce mediante la b-cetotiolasa.
Este proceso puede volver a ser reutilizado usando ese acil-co-A 2 C más corto.
Se producen roturas discretas de 2 C produciendo en cada ciclo 1 FADH2 y 1 NADH.
Estas reacciones también se producen en el ciclo de Krebs desde succinato a OAA. Siempre se forma un doble enlace, hidroxilo, cetona y se acaba obteniendo energía.
Si entra una molécula de palmitoil-co-A (16 C), para romperlo hacen falta 7 FAD, 7 NAD y 7 moléculas de H2O y 7 Co-A.
Palmitoil-co-A+7FAD+7NAD++7H2O+7Co-A 8Acetil-co-A+7FADH2+7NADH+7H+​
7 FADH2 = 7 x 1´5 ATP​
7 NADH = 7 x 2´5 ATP​
total = 28 ATP​
Los ácidos grasos se degradan donde está la estructura que utiliza estos productos resultantes.
Los 8 acetilo-co-A que se encuentran en la mitocondria pueden ser transferidos, cada uno de ellos en: 3 NADH, 1 FADH2 y 1 GTP. Dan lugar a 80 ATP.
En total, dan lugar a 108 ATP, a los que hay que restar 2 ATP que son lo que cuesta formar el palmitoil-co-A.
La importancia del glicerol es la formación de glucosa, que es imprescindible para algunos tejidos.
El degradar ácidos grasos insaturados provoca un problema en el animal. Para que un ácido graso dé toda la energía que lleva, hace falta que se de la b-oxidación y que el acetil-co-A entre en el ciclo de Krebs (es necesario que hayan intermedios que los capturen).
A veces, la b-oxidación de tantos acetil-co-A los hace imposible de capturar. También puede ser que sobre acetil-co-A. El organismo responde a esa situación generando cuerpos cetónicos (combustibles alternativos que producen los animales).
Para sacar todo el provecho de energía hay que tener un mínimo de carbohidratos para alimentar los intermedios del ciclo de Krebs.
Los ácidos grasos que sólo dan acetil-co-A como producto no pueden dar glucosa.
La existencia de dobles enlaces en los ácidos grasos se da esencialmente en:
cis D9 C16 => ácido palmitoleico




Se metaboliza dando palmitoil-co-a, llegando a la mitocondria. Cuando entra en la b-oxidación, se oxida 2 veces y da 1 acetil-co-A. Cuando queda:



Se intentaría colocar un doble enlace, que es imposible. La deshidrogenasa no puede introducir este doble enlace en la posición concreta y, el ácido graso no se podría aprovechar. Este ácido graso es sustrato para una isomerasa que trasloca el doble enlace de la posición 3-4 a la posición 2-3.
Además, genera una estereoquímica trans que es la que se genera a consecuencia de la acil-co-A deshidrogenasa. El material que queda es el mismo que el producto de la acil-co-A deshidrogenasa (enoil-co-A).
Si el doble enlace está bien situado, pero con la estereoquímica equivocada, a la célula, a priori no le pasa nada porque la hidratasa no es estereoespecífica. Producirá el D-hidroxiacilderivado en vez del L-hidroxiacilderivado.
La L-hidroxiacil-co-A deshidrogenasa sí es estereoespecífica. Existe una epimerasa que lo transforma de D a L. El hidroxiacil-co-A producido por la epimerasa es sustrato para la L-hidroxiacil-co-A deshidrogenasa.
Un ácido graso con dobles enlaces da un poco menos de energía porque es una molécula menos reducida que sin dobles enlaces. Cuando se oxida, se saca más energía. Los ácidos grasos con dobles enlaces, sea cual sea su situación , entran en uno de los puntos en los que se produce FAD. Rinden menos cuanto más dobles enlaces tienen.
La mayoría de ácidos grasos tienen cadena par. Algunos tienen cadena impar. Los de cadena impar se metabolizan igual, cuando se llega a 5 C, producen acetil-co-A y propionil-co-A.
Los ácidos grasos, cuando se degradan, no pueden dar glucosa. Se utiliza el propiónico para dar:
succinil-co-A=>OAA=>ciclo de Krebs=>PEP=>gluconeogénesis​
La proporción de ácidos grasos de cadena impar puede ser de un 1%. De ese 1%, muy pocos carbonos tienen la posibilidad de dar la mitad de glucosa. Es una cantidad despreciable de glucosa. Metabólicamente hablando, los ácidos grasos no pueden dar glucosa porque la glucosa que pueden formar es mínima.
Los triglicéridos son la fuente de los ácidos grasos. Los ácidos grasos son la fuente de acetil-co-A. El acetil-co-A se utiliza en el ciclo de Krebs para dar energía. La glucosa también puede rellenar moléculas del ciclo de Krebs.











La energía se produce siempre que hay suficientes moléculas en los intermedios del ciclo de Krebs, si se requiere la degradación de Triglicéridos (Ej: ayuno prolongado, la ingesta de glucosa está bloqueada).
El mecanismo para rellenar el ciclo de Krebs no funciona y se necesita energía. Se acumula mucho acetil-co-A en el hígado porque no puede introducirlo en el ciclo de Krebs (no hay suficientes intermedios del ciclo de Krebs).
La utilidad metabólica que se da al acetil-co-A se llama cuerpos cetónicos. Son 1 forma de empaquetar acetil-co-A que no puede utilizar del hígado, para enviarlo a tejidos periféricos. Se produce en las mitocondrias. Este proceso ocurre:
2 moléculas de acetil-co-A se unen mediante la cetotiolasa para dar el acetoacetil-co-A, que capta una tercera molécula de acetil-co-A, para dar el 3-OH-3-metilglutanil-co-A. Es realizado por la HMG-co-A sintasa.
En el citosol, también se puede dar la síntesis de HMG-co-A por la síntesis de esteroides.
En la mitocondria, el HMG-co-A se escinde para dar el acetoacetato. Es un cuerpo cetónico que puede ir a sangre e ir a hígado y alcanzar corazón o, se puede transformar en acetona (es un b-cetoácido fácilmente descarboxilable).
Si la disponibilidad de NADH es suficiente, se descarboxila la acetona a OH en 3-D-hidroxibutirato. Es también un cuerpo cetónico. Es la forma de viajar de 2 acetilos en sangre. La acetona también va a sangre y tiene un punto de ebullición muy bajo, al pasar por los alvéolos pulmonares, se intercambia con el aire que se respira y, el aliento, huele a acetona. Se determina en orina.
Es una respuesta metabólica normal a una situación de fiebre que ha gastado mucha energía. El organismo responde con una lipólisis exacerbada que produce mucho acetil-co-A y generará cuerpos cetónicos.
Muchos síndromes en animales de producción (cetosis bovina) son porque la glándula mamaria succiona mucha glucosa de la circulación. En un animal muy productor puede generar un estado de desnutrición metabólica, a la que el animal responde produciendo cuerpos cetónicos.
En los tejidos diana se vuelve a regenerar acetil-co-A. En el tejido receptor del cuerpo cetónico, el acetoacetato se convierte en L-acetil-co-A:







El hígado lo exporta porque no tiene transferasa. Se metaboliza regenerando acetil-co-A. Esa circunstancia a veces resulta o es la respuesta a una patología.
SÍNTESIS DE ÁCIDOS GRASOS DE HASTA 16 C DE CADENA PAR Y TOTALMENTE SATURADOS
El resto de ácidos grasos ha de hacerse bajo estructuras específicas.
La degradación es mitocondrial y, la síntesis, es citosólica para no interferir.
En la degradación, los ácidos grasos van unidos a co-A.
En la síntesis, los ácidos grasos van unidos a ACP (acil carrier protein). Tiene cosas parecidas al co-A.
En la degradación de ácidos grasos, los enzimas se transcriben independientemente y están separados.
En la síntesis,l os enzimas forman un complejo multienzimático codificado en 1 único gen (ácidos grasos sintetasa).
La degradación consiste en retirar fragmentos de 2 C.
En la síntesis se unen fragmentos de 2 C.
En la síntesis, la molécula dadora de los 2C tiene 3C. Esa molécula dadora es el malonil-co-a, que descarboxila y deja 2 de sus 3 C en la cadena del ácido graso.
La oxidación de ácidos grasos produce cantidades enormes de acetil-co-A.
La síntesis de ácidos grasos consume cantidades enormes de NADPH.
Para fabricar ácidos grasos, se centra en la producción de malonil-co-A, que se produce:








Es una reacción que implica la incorporación de un C orgánico del CO2 a una molécula orgánica.
La acetil-co-A carboxilasa tiene biotina como grupo prostético. Es el factor más importante de la regulación de síntesis de ácidos grasos. Es regulada positivamente por citrato y tiene una regulación negativa por el malonil-co-A y una regulación por fosforilación, que inhibe su función. La fosforilación la hace la AMP-proteina quinasa.
EL COMPLEJO DE LA ÁCIDO GRASO SINTETASA
La eliminación del P de la carboxilasa está catalizada por una fosfatasa de tipo 2A.



La proteína ACP (transportador proteína acilo) es donde está unido el ácido graso en la síntesis. Es pequeña y tiene un residuo en la serina, que es la fosfopanteteina. El ácido pantoténcio es un extremo del co-A, donde se unen los ácidos grasos en la degradación. La ACP tiene en ese extremo un grupo tiol.
Acetil-co-A + ACP => Acetil-ACP + Co-A​
Existen transacilasa que pueden transferir el acetil-co-A intercambiándolo por ACP.
También existen transacilasas que pueden transferir el malonil-co-A a la ACP.
Malonil-co-A + ACP => Malonil-ACP + Co-A​
La malonil-co-A transacilasa es muy específica. La acetil-co-A transacilasa no es tan específica.
1 acetil-ACP reacciona con un malonil-ACP en una reacción de condensación. El malonil-ACP descarboxila y permite que el acetil ataque. En la síntesis de malonil-co-A, el C venía del CaCO3. Esa transformación cuesta energía. El malonilo es simplemente una forma activada del acetilo. Se lleva a cabo mediante el enzima b-cetoacil sintasa, porque da lugar a un acetoacetil-ACP.
El b-acetoderivado sufre una reducción que involucra la oxidación de NADPH a NADP, que conlleva la oxidación por la b-cetoacil-ACP reductasa.
La b-cetoacil-ACP reductasa genera el OH donde irá la quinona. Se forma siempre el estereoisómero D- (D-3-OHbutiril-ACP). El OH se deshidrata por una hidratasa. Se forma el crotonil-ACP (pero se conoce genéricamente como un enoil-ACP) por la enoil-ACP reductasa. Oxida el NADPH a NADP. Se obtiene butiril-ACP.
Este proceso es químicamente la reversión de la degradación.
El butiril-ACP no tiene problemas en ser sustrato de la b-cetoacil sintasa, que será procesado hasta ser el derivado de 6C. Luego se vuelve a dar el proceso hasta llegar a los 16 C saturados. Puede dar ácido palmítico o palmitoil-ACP.






Se necesita un acetil-ACP y 7 maloil-ACP 8 que vienen de 7 acetil-co-A) para dar palmítico.
1. 7 acetil-co-A + 7 CO2 + 7 ATP ======> 7 malonil-co-A + 7 ADP + 7 Pi + 7 H+​
2.7malonil-co-A +acetil-co-A+14NADPH+ 7H+=> palmitato + 7CO2 + 14NADP+ + 8Co-A + 6H2O​

Los complejos multienzimáticos son parecidos a cadenas de montaje. La ácidograsossintetasa tiene 7 dominios:
-Actividades transacilasa en el 1º dominio y la 1ª actividad enzimática de la cadena b-cetoacilsintasa.
-Está las 3 siguientes actividades (2 reductasas e hidratasa).
-Está la tioesterasa (libera palmítico).
Se necesita acetil-co-A para producir malonilo. El acetil-co-A, principalmente se produce en la mitocondria. El acetil-co-A debe estar en el citosol porque el complejo acidograsosintetasa se necesita en el citosol. La célula tiene que transformar el acetil-co-A en citrato para salir de la mitocondria. El citrato en el citosol puede ser indicativo de exceso de acetil-co-A en la mitocondria.
El citrato se vuelve a transformar en OAA con gasto de energía. El OAA vuelve a entrar en la mitocondria porque se reduce a malato, que después se oxida mediante el enzima málicodependiente de NADP. El pyr puede pasar a la mitocondria por permeabilidad. La pyruvatodescarboxilasa lo transforma en OAA.
Es un proceso que pasa NADH a NAD y regenera NADPH de NADP.
Además, permite extraer acetil-co-A:
NADP++NADPH+ ATP+ H2O => NADPH + NAD++ADP+Pi+H+​
Transforma NADH a NADPH. La misma máquina que extrae la materia prima fabrica el poder reductor que hace falta para oxidar esa materia prima.
Se necesita exportar 8 Acetil-co-A. Se fabrica 8 NADPH al extraer los 8 acetil-co-A. Se necesitan 6 NADPH más para formar un palmítico. Los otros NADPH se obtienen de la pentosa fosfato. Hay que quemar 3 pentosas fosfato porque cada oxidación de la pentosa fosfato rinde 2 NADPH.
La elongación de la cadena ocurre en el retículo endoplásmico e implica otros enzimas que cogen malonil-co-A y añade bloques de 2 C ala cadena de ácido graso.
No se suelen observar ácidos grasos de más de 22-24 C.
La oxidación de enlaces sencillos a dobles enlaces lo hacen las oxidasas (emplean O2 y NADH o NADPH).
La capacidad de los mamíferos para introducir dobles enlaces en los ácidos grasos es muy limitada. No se puede introducir un doble enlace más allá de D9. Esos enlaces que no se pueden introducir son imprescindibles para los animales. Ej: linoleato (18:2 D9, D12). Lenolenato (18:3 D9, D12, D15).
Son ácidos grasos esenciales que se tienen que ingerir en la dieta. Sobretodo para las vainas de mielina.
PUNTOS DE REGULACIÓN

DEGRADACIÓN:
TG (lipasa) en la movilización.
Acceso a la mitocondria (CAT I: acetiltransferasa) inhibida negativamente por malonil-co-A.
2 deshidrogenasas sensibles negativamente por mucho NADH.
SÍNTESIS:
Esencialmente por la carboxilasa (hace malonil-co-A). Se hace la regulación de acetil-co-A carboxilasa regulada positivamente por el citrato citosólico. A su vez, está inhibida por el producto final de la sintasa (palmítico).
Además, está regulada por fosforilación, que puede ser en última instancia inducida por hormonas anabólicas (insulina) o catabólicas (glucagón).
Hay puntos sensibles dentro y fuera de la célula.
 
gracias por sus aportaciones
=)


son de gran ayuda
 
Atrás
Arriba